6.5 KiB
6.5 KiB
Display System Optimization Roadmap
Phase 2: GStreamer Integration
Overview
Implement GStreamer-based display backend for hardware-accelerated rendering, particularly optimized for embedded systems like Raspberry Pi.
Goals
- Performance: 60-80% reduction in CPU usage
- Hardware Acceleration: Utilize GPU/VPU when available
- Zero-Copy: Minimize memory bandwidth usage
- Flexibility: Support multiple output formats (window, file, network stream)
Implementation Plan
1. Core GStreamer Backend (src/display/gstreamer_backend.rs)
pub struct GStreamerDisplay {
pipeline: gst::Pipeline,
appsrc: gst_app::AppSrc,
bus: gst::Bus,
config: DisplayConfig,
stats: DisplayStats,
}
impl DisplayBackend for GStreamerDisplay {
// Implement trait methods using GStreamer pipeline
}
Key Features:
- Dynamic pipeline creation based on output requirements
- Hardware encoder detection and utilization
- Efficient buffer management with memory pools
- Error handling and pipeline state management
2. Pipeline Configurations
Basic Window Display
appsrc ! videoconvert ! videoscale ! xvimagesink
Hardware-Accelerated (Raspberry Pi)
appsrc ! v4l2convert ! video/x-raw,format=NV12 ! v4l2h264enc ! h264parse ! v4l2h264dec ! xvimagesink
Network Streaming
appsrc ! videoconvert ! x264enc ! rtph264pay ! udpsink host=192.168.1.100 port=5000
File Recording
appsrc ! videoconvert ! x264enc ! mp4mux ! filesink location=output.mp4
3. Dependencies and Setup
Cargo.toml additions:
[dependencies]
gstreamer = "0.20"
gstreamer-app = "0.20"
gstreamer-video = "0.20"
[features]
gstreamer-display = ["gstreamer", "gstreamer-app", "gstreamer-video"]
System Dependencies:
# Ubuntu/Debian
sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
# Raspberry Pi additional packages
sudo apt install gstreamer1.0-omx gstreamer1.0-plugins-bad
4. Buffer Management Optimization
struct BufferPool {
pool: gst::BufferPool,
allocator: gst::Allocator,
}
impl BufferPool {
fn get_buffer(&self, mat: &opencv::Mat) -> Result<gst::Buffer> {
// Zero-copy conversion from OpenCV Mat to GStreamer Buffer
// Use memory mapping when possible
}
}
5. Auto-Detection and Fallback
pub fn create_optimal_display(config: DisplayConfig) -> Box<dyn DisplayBackend> {
if gstreamer_available() && hardware_acceleration_available() {
Box::new(GStreamerDisplay::new(config))
} else {
Box::new(OpenCVDisplay::new(config))
}
}
Hardware-Specific Optimizations
Raspberry Pi 4/5
- GPU Memory Split:
gpu_mem=128in/boot/config.txt - V4L2 Codecs: Utilize hardware H.264 encoder/decoder
- DMA Buffers: Use DMA-BUF for zero-copy operations
NVIDIA Jetson
- NVENC/NVDEC: Hardware encoding/decoding
- CUDA Integration: GPU-accelerated image processing
Intel Systems
- VAAPI: Video Acceleration API support
- Quick Sync: Hardware encoding acceleration
Performance Targets
| Metric | Current (OpenCV) | Target (GStreamer) | Improvement |
|---|---|---|---|
| CPU Usage | 60-80% | 15-25% | 60-75% reduction |
| Memory Bandwidth | 2-3 GB/s | 0.5-1 GB/s | 50-75% reduction |
| Latency | 3-5 frames | 1-2 frames | 60% reduction |
| Power Consumption | High | Low | 30-50% reduction |
Implementation Timeline
Week 1-2: Foundation
- Set up GStreamer Rust bindings
- Create basic pipeline structure
- Implement DisplayBackend trait
- Basic window display working
Week 3-4: Optimization
- Buffer pool implementation
- Zero-copy Mat to Buffer conversion
- Hardware acceleration detection
- Pipeline optimization
Week 5-6: Advanced Features
- Multiple output support (file, network)
- Error recovery and robustness
- Performance profiling and tuning
- Documentation and examples
Week 7-8: Integration and Testing
- Update demos to use GStreamer backend
- Raspberry Pi testing and optimization
- Benchmark comparison with OpenCV
- Production readiness assessment
Compatibility Matrix
| Platform | GStreamer Support | Hardware Accel | Recommended Pipeline |
|---|---|---|---|
| Raspberry Pi 4/5 | ✅ | V4L2 | v4l2convert + omx |
| NVIDIA Jetson | ✅ | NVENC/NVDEC | nvvidconv + nvenc |
| Intel x86 | ✅ | VAAPI | vaapi + intel-media |
| Generic Linux | ✅ | Software | videoconvert + x264 |
| macOS | ✅ | VideoToolbox | vtenc + osxvideosink |
| Windows | ✅ | DirectShow | d3d11 + mf |
Testing Strategy
Unit Tests
- Pipeline creation and teardown
- Buffer management
- Error handling
Integration Tests
- End-to-end display functionality
- Performance benchmarking
- Memory leak detection
Hardware Tests
- Raspberry Pi 4/5 validation
- NVIDIA Jetson compatibility
- Various resolution and framerate combinations
Risk Mitigation
Potential Issues
- GStreamer Version Compatibility: Different distributions have different GStreamer versions
- Hardware Driver Issues: Proprietary drivers may not be available
- Memory Alignment: OpenCV Mat and GStreamer Buffer memory layout differences
Solutions
- Runtime Detection: Probe capabilities at startup
- Graceful Fallback: Fall back to OpenCV backend if GStreamer fails
- Memory Copy Fallback: Use memory copy if zero-copy fails
Success Metrics
Must-Have
- 50%+ reduction in CPU usage on Raspberry Pi
- Maintain visual quality parity with OpenCV
- No memory leaks during extended operation
- Graceful error handling and recovery
Nice-to-Have
- Network streaming capability
- Recording to file functionality
- Multi-window support
- Real-time performance monitoring
Documentation Requirements
- API documentation for new backend
- Hardware setup guides for different platforms
- Performance tuning recommendations
- Troubleshooting guide for common issues
- Migration guide from OpenCV backend
Phase 3: Future Enhancements
WebRTC Integration
- Real-time streaming to web browsers
- Low-latency remote monitoring
Custom Shaders
- GPU-accelerated overlay rendering
- Advanced visual effects
Multi-Display Support
- Simultaneous output to multiple displays
- Picture-in-picture functionality
This roadmap will be updated as Phase 2 development progresses.