meteor_detect/TODO_DISPLAY_OPTIMIZATION.md

6.5 KiB

Display System Optimization Roadmap

Phase 2: GStreamer Integration

Overview

Implement GStreamer-based display backend for hardware-accelerated rendering, particularly optimized for embedded systems like Raspberry Pi.

Goals

  • Performance: 60-80% reduction in CPU usage
  • Hardware Acceleration: Utilize GPU/VPU when available
  • Zero-Copy: Minimize memory bandwidth usage
  • Flexibility: Support multiple output formats (window, file, network stream)

Implementation Plan

1. Core GStreamer Backend (src/display/gstreamer_backend.rs)

pub struct GStreamerDisplay {
    pipeline: gst::Pipeline,
    appsrc: gst_app::AppSrc,
    bus: gst::Bus,
    config: DisplayConfig,
    stats: DisplayStats,
}

impl DisplayBackend for GStreamerDisplay {
    // Implement trait methods using GStreamer pipeline
}

Key Features:

  • Dynamic pipeline creation based on output requirements
  • Hardware encoder detection and utilization
  • Efficient buffer management with memory pools
  • Error handling and pipeline state management

2. Pipeline Configurations

Basic Window Display
appsrc ! videoconvert ! videoscale ! xvimagesink
Hardware-Accelerated (Raspberry Pi)
appsrc ! v4l2convert ! video/x-raw,format=NV12 ! v4l2h264enc ! h264parse ! v4l2h264dec ! xvimagesink
Network Streaming
appsrc ! videoconvert ! x264enc ! rtph264pay ! udpsink host=192.168.1.100 port=5000
File Recording
appsrc ! videoconvert ! x264enc ! mp4mux ! filesink location=output.mp4

3. Dependencies and Setup

Cargo.toml additions:

[dependencies]
gstreamer = "0.20"
gstreamer-app = "0.20"
gstreamer-video = "0.20"

[features]
gstreamer-display = ["gstreamer", "gstreamer-app", "gstreamer-video"]

System Dependencies:

# Ubuntu/Debian
sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev

# Raspberry Pi additional packages
sudo apt install gstreamer1.0-omx gstreamer1.0-plugins-bad

4. Buffer Management Optimization

struct BufferPool {
    pool: gst::BufferPool,
    allocator: gst::Allocator,
}

impl BufferPool {
    fn get_buffer(&self, mat: &opencv::Mat) -> Result<gst::Buffer> {
        // Zero-copy conversion from OpenCV Mat to GStreamer Buffer
        // Use memory mapping when possible
    }
}

5. Auto-Detection and Fallback

pub fn create_optimal_display(config: DisplayConfig) -> Box<dyn DisplayBackend> {
    if gstreamer_available() && hardware_acceleration_available() {
        Box::new(GStreamerDisplay::new(config))
    } else {
        Box::new(OpenCVDisplay::new(config))
    }
}

Hardware-Specific Optimizations

Raspberry Pi 4/5

  • GPU Memory Split: gpu_mem=128 in /boot/config.txt
  • V4L2 Codecs: Utilize hardware H.264 encoder/decoder
  • DMA Buffers: Use DMA-BUF for zero-copy operations

NVIDIA Jetson

  • NVENC/NVDEC: Hardware encoding/decoding
  • CUDA Integration: GPU-accelerated image processing

Intel Systems

  • VAAPI: Video Acceleration API support
  • Quick Sync: Hardware encoding acceleration

Performance Targets

Metric Current (OpenCV) Target (GStreamer) Improvement
CPU Usage 60-80% 15-25% 60-75% reduction
Memory Bandwidth 2-3 GB/s 0.5-1 GB/s 50-75% reduction
Latency 3-5 frames 1-2 frames 60% reduction
Power Consumption High Low 30-50% reduction

Implementation Timeline

Week 1-2: Foundation

  • Set up GStreamer Rust bindings
  • Create basic pipeline structure
  • Implement DisplayBackend trait
  • Basic window display working

Week 3-4: Optimization

  • Buffer pool implementation
  • Zero-copy Mat to Buffer conversion
  • Hardware acceleration detection
  • Pipeline optimization

Week 5-6: Advanced Features

  • Multiple output support (file, network)
  • Error recovery and robustness
  • Performance profiling and tuning
  • Documentation and examples

Week 7-8: Integration and Testing

  • Update demos to use GStreamer backend
  • Raspberry Pi testing and optimization
  • Benchmark comparison with OpenCV
  • Production readiness assessment

Compatibility Matrix

Platform GStreamer Support Hardware Accel Recommended Pipeline
Raspberry Pi 4/5 V4L2 v4l2convert + omx
NVIDIA Jetson NVENC/NVDEC nvvidconv + nvenc
Intel x86 VAAPI vaapi + intel-media
Generic Linux Software videoconvert + x264
macOS VideoToolbox vtenc + osxvideosink
Windows DirectShow d3d11 + mf

Testing Strategy

Unit Tests

  • Pipeline creation and teardown
  • Buffer management
  • Error handling

Integration Tests

  • End-to-end display functionality
  • Performance benchmarking
  • Memory leak detection

Hardware Tests

  • Raspberry Pi 4/5 validation
  • NVIDIA Jetson compatibility
  • Various resolution and framerate combinations

Risk Mitigation

Potential Issues

  1. GStreamer Version Compatibility: Different distributions have different GStreamer versions
  2. Hardware Driver Issues: Proprietary drivers may not be available
  3. Memory Alignment: OpenCV Mat and GStreamer Buffer memory layout differences

Solutions

  1. Runtime Detection: Probe capabilities at startup
  2. Graceful Fallback: Fall back to OpenCV backend if GStreamer fails
  3. Memory Copy Fallback: Use memory copy if zero-copy fails

Success Metrics

Must-Have

  • 50%+ reduction in CPU usage on Raspberry Pi
  • Maintain visual quality parity with OpenCV
  • No memory leaks during extended operation
  • Graceful error handling and recovery

Nice-to-Have

  • Network streaming capability
  • Recording to file functionality
  • Multi-window support
  • Real-time performance monitoring

Documentation Requirements

  • API documentation for new backend
  • Hardware setup guides for different platforms
  • Performance tuning recommendations
  • Troubleshooting guide for common issues
  • Migration guide from OpenCV backend

Phase 3: Future Enhancements

WebRTC Integration

  • Real-time streaming to web browsers
  • Low-latency remote monitoring

Custom Shaders

  • GPU-accelerated overlay rendering
  • Advanced visual effects

Multi-Display Support

  • Simultaneous output to multiple displays
  • Picture-in-picture functionality

This roadmap will be updated as Phase 2 development progresses.