DeNA

Automated, Non-Stop
MySQL Operations and Failover

Yoshinori Matsunobu

Principal Infrastructure Architect, DeNA
Former APAC Lead MySQOL Consultant at MySQL/Sun/Oracle
Yoshinori.Matsunobu(@gmail.com

http.//yoshinorimatsunobu.blogspot.com/

Table of contents S

B Automating master failover (main topic)

Company Introduction: DeNA and MobageD VA

B One of the largest social game providers 1n Japan
® Both social game platform and social games themselves
® Subsidiary ngmoco:) in SF
B Japan localized phone, Smart Phone, and PC games
M 2-3 billion page views per day
B 25+ million users
B 700+ MySQL servers

M 1.3BY revenue in 2010

HA Requirements for social games

B Requirements about high availability and integrity are
quite high
® Paid service dramatically raises expectations from users

— “I haven’t received a virtual 1tem I paid for”
— “My HP/MP fell after I used non-free recovery item”

® [.ong downtime causes huge negative impacts on revenue

® Planned maintenance 1s not impossible, 1f properly planned
and announced
— Traffic at 5 am 1s less than 1/5 compared to 11 pm
— Much better than unplanned downtime

The goal is “No Single Point of Failure” =

B We operate 700+ MySQL servers at DeNA

® More than 150 {master, slaves} pairs
® Mainly MySQL 5.0 and 5.1

B Statistically MySQL master went down once per a few months
® In many times caused by hangs on Linux or H/'W {failures
® Manual failover should be avoided if possible, to minimize downtime

B [t 1s easy to make slaves not single point of failure
® Just running two or more slaves

B [t 1s not trivial to make masters not single point of failure

B We want to automate master failover and slave promotion
® On regular MySQL 5.0/5.1, and 5.5+

— We don’t want to spend time for significant architecture changes on legacy
running services

® Without losing performance significantly
® Without spending too much money

Master Failover: What is the problem? "

Writer IP ?Writer IP
New Master

- slave1->

sla slave2: slave3:

g a
slave slav
Problem: CHANGE MASTER CHANGE MASTER

When a master goes down, the system also goes down until *manual* master
failover completes (you can’t do writes). It is not uncommon to take one hour or
even more to recover.

Objective:

Automate master failover. That is, pick one of the appropriate slaves as a new
master, making applications send write traffics to the new master,

then starting replication again.

Faillure

Example (1)

Writer |P

Any

Get current binlog position (file1,pos1)
Grant write access
Activate writer |P address

T\é
slave

1d=99
1Id=100
1d=101

DeNA

All slaves have received all binlog events
from the crashed master.

slave can be a new master,

without recovering any data

Example: picking slave 1 as a new master

Slave 2 and 3 should execute

CHANGE MASTER MASTER HOST=
'slave1’ ...;
START SLAVE;

This Is the easiest scenario.

1d=99 1d=99
id=100 1Id=100
id=101 id=101

Execute CHANGE MAST

But not all times it is so lucky.

=R TO MASTER HOST='slave1’,

MASTER LOG FILE=‘file1’, MASTER LOG POS=pos;

Failure Example (2) DeNA

All slaves have received same binlog events
from the crashed master.

But the crashed master has some events
that have not been sent to slaves yet.

id=102 | iId=102 will be lost if you promote
Copy and apply events (1d=102) gna of slaves to a new master.

Start Master _ _
: / ‘ \ If the crashed master is reachable (via SSH)
P u ? 3 F = and binlog file is readable, you should
@ Qa @j save binlog (id=102) before promoting
slave

n sIaveP' sla\)e" a slave to a new master.

id=99 id=99 id=99 _ _ L
id=100 id=100 4=100 Using Semi-Synchronous replication
id=101 id=101 id=101 greatly reduces the risk of this scenario.
id=102 id=102 id=102

CHANGE MASTER

Failure Example (3)

Writer IP

Start Master

d__:\ﬂ -
slave1 slaveZ2 slaved
4=09 id=99 id=99
id=100 d=100 id=100
d=101 =101 id=101
|ldentify which events are not sent
Apply lost events

CHANGE MASTER

Some slaves have events which
other slaves have not received yet.

You need to pick events from the
latest slave (slave 2), and apply to
other slaves so that all slaves will be
consistent.

(Sending id=101 to slave 1, sending
Id=100 and 101 to slave 3)

The issues are:

- How can we identify which binlog
events are not sent?

- How can we make all slaves
eventually consistent?

Master Failover: What makes i1t difficult? S

MySQL replication is asynchronous.

Writer |P

It is likely that some (or none of) slaves have
not received all binary log events from the
crashed master.

It is also likely that only some slaves have
received the latest events.

Save bing events that

ISt t I
e 0% In the left example, id=102 is not replicated to
@

F ? - any slave.
r- _. N—
slag slaveg Sb\,g slave 2 Is the latest between slaves, but

4=99 4=99 4=09 Slave 1 and slave 3 have lost some events.
id=100 '4=100 d=100 It 1s necessary to do the following:
id=10T~_ id=101 d=101 - Copy id=102 from master (if possible)

|denﬁ;1v?,%ich eif,jezrl?fare n(;?;é% - Apply all differential events, otherwise data

Apply lost events Inconsistency happens.

Current HA solutions and problems DENA

B Heartbeat + DRBD

® (ost: Additional passive master server (not handing any application traffic) 1s needed

® Performance: To make HA really work on DRBD replication environments, innodb-
flush-log-at-trx-commit and sync-binlog must be 1. But these kill write performance

® Otherwise necessary binlog events might be lost on the master. Then slaves can’t
continue replication, and data consistency 1ssues happen

B MySQL Cluster
® MySQL Cluster 1s really Highly Available, but unfortunately we use InnoDB

B Semi-Synchronous Replication (5.5+)

® Semi-Sync replication greatly minimizes the risk of “binlog events exist only on the
crashed master” problem

® |t guarantees that *at least one™ (not all) slaves receive binlog events at commit. Some
of slaves might not receive all binlog events at commuit.

B Global Transaction ID

® On mysql side, 1t’s not supported yet. Adding global transaction Id within binary logs
require binlog format change, which can’t be done 1n 5.1/5.5.

— Check Google’s Global Transaction ID patch if you’re interested

® There are ways to implement global tx ID on application side, but 1t’s not possible
without accepting complexity, performance, data loss, and/or consistency problems

More concrete objective

B Make master failover and slave promotion work

® Saving binary log events from the crashed master (if possible)
— Semi-synchronous replication helps too

® [dentifying the latest slave

® Applying differential relay log events to other slaves
® Applying saved binary log events from master

® Promoting one of the slaves to a new master

® Making other slaves replicate from the new master

B Automate the above procedure
® Master failure should also be detected automatically

B Do the above
® Without introducing too much complexity on application side
® With 5.0/5.1 InnoDB
® Without losing performance significantly
® Without spending too much money

NA

Saving binlog events from (crashed) master DENA

Dead Master Latest Slave Other Slaves

" Lost events {Master Log File, Read Master Log Pos} from
SHOW SLAVE STATUS (mysqld-bin.000013, 12345)

mysqlbinlog --start-position=12345 mysqld-bin.000013 mysqld-bin.000014....

B [f the dead master 1s reachable via SSH, and binary logs are
accessible (Not H/W failure, 1.e. InnoDB data file corruption on the
master), binlog events can be saved.

B [ost events can be 1dentified by checking {Master Log File,
Read Master Log Pos} on the latest slave + mysqlbinlog

B Using Semi-Synchronous replication greatly reduces the risk of
events loss

Understanding SHOW SLAVE STATUS =

mysql> show slave status¥G
Slave 10 State: Waiting for master to send event

Master Host: master host B {Master Log File,
Master User: repl Read Master Log Pos} :
Master Port: 3300

The position 1n the current
Connect Retry: 60 master binary log file up to

_ Master Log File: mysqld—bin. 000980 | which the I/0 thread has read.
Rad_Master_Log_Pos: 629290122

{Relay Master Log File,
Exec Master Log Pos} :

The position in the current

>lave_1U_Kunning: Yes | ~ master binary log file up to
Slave SQL Running: Yes / which the SQL thread has read
Replicate Do DB: dbl and executed.
Last_Errno: 0 ,/ éRflayiLogﬁF ile,
Last Error: f _ clay_Log_Pos; :
\ Exec_Master_Log Pos: 629290122 The position in the current
Seconds Behind Master: 0O relay log file up to which the
Last 10 Errno: 0 SQL thread has read and
Last I0 Error: e,

LLast SQL Errno: 0

[dentitfying the latest slave DENA

Slave 1 Slave 2 Slave 3

Relay log name slavetl-relay.003300 slave2-relay.003123 slave3-relay.001234

\Master_Log_File, mysqgld-bin.001221 mysqld-bin.001221 mysqld-bin.001221

Read Master pos 102067 pos 102238 pos 101719
Log Pos}

B Relay log name/position 1s not helpful to identify the latest
slave, because relay log name/position 1s independent from
slaves

B By comparing {Master Log File, Read Master Log Pos},
you can identify the latest slave

® Slave 2 1s the latest

Next issue: Applying diffs to other slaves

B How can we 1dentify
? which binlog events

P@i g need to be applied to
slave slav

each slave?

s

1d=99 =99 1d=99
1d=100 1d=100 Id=100
d=101 . 1d=101 1d=101

ldentify which events are not sent
Apply lost events

[dentifying what events need to be applied DENA

Slave 1 Slave 2 Slave 3

slave2-relay.003123

slave3-relay.001234
slave1-relay.003300

\Master_Log_File, mysqld-bin.001221 mysqld-bin.001221 mysqld-bin.001221

Read Master pos 102067 pos 102238 pos 101719
Log Pos}

B Since we know all slave’s master position, by comparing these
positions, generating differential relay log events should be
possible

B There 1s no simple way to generate differential relay log events
based on master’s log file/position

Relay log internals:

user@slave2] mysqibinlog slaveZ-relay-bin.0C

at 106

#101210 4:19:03 server id 1384 end log pos O il
Rotate to mysqld-bin.001221 pos: 4

at 101835

#110207 15:43:42 server id 1384 end log pos 101764
Query thread id=1784 exec time=0 error code=0
SET TIMESTAMP=1297061022/*!*/;

BEGIN /*!*/; |
#at 101910

#110207 15:43:42 server id 1384 end log pos 102067
Query thread id=1784 exec time=0 error_code=0

SET TIMESTAMP=1297061022/*!*/;)
update [*1*],
at 102213

#110207 15:43:42 server id 1384 end _log pos 102211
Query thread id=1784 exec time=0 error code=0 W
SET TIMESTAMP=1297061022/*"*/;

updatecooeiiinnn. [*1*/;
at 102357 _pi—— &
#110207 15:43:42 server id 1384 end Iog pos 102238
Xid = 12951490691 | - '
COMMIT/*!*/;

EOF

1 7) 1 7)
at” and end log pos

DeNA

“# at xxx”’ corresponds to relay log
position of the slave. This 1s not
master’s binlog position. Each
slave might have different relay log
position for the same binary log
event.

end log pos corresponds to the
master’s binary log position. This
1s unique between slaves.

At the beginning of the relay log
file, normally master’s binary log
file name 1s written.

end log pos of the tail of the last

relay log should be equal to
_~AMaster Log File,
Read Master Log Pos} from

SHOW SLAVE STATUS.

Relay log internals: How to identify diffs bt

' [user@slave3] mysqglbinlog slave3-relay-bin.001234

| [user@slaveZ] mysqlbinlog slave2-relay-bin.003123

at 234567
4440207-45:43:42-serverid-1384¢end_log_pos 101718
Xid = 12951490655 — T
COMMIT/*1*/;

EOF

#at101807 S
#110207 15:43:42 server id 1384:"’end Iog_pos 10171 J
de = 12951490655 g '

715:43:42 sérver id 1384 end log_pos 101764
Query thread id=1f84 exec time=0 error_code=0
SET TIMESTAMP=1297061022/*!*/;
BEGIN /*!*/;
#at 101910 |
#110207 15:43:42 server id 1384 end _log_pos 102067
Query thread id= 1 84 exec time=0 error _code=0

B Slave 2 has received more binlog
events than Slave 3

B Check the last end log pos on the
behind slave (101719 at Slave 3)

SET TIMESTAMP= 297061022/*'*/
updatel..... [*1*/;
#at 102213 B Search Slave 2’s relay log where

#110207 15:43:42 sgrver id 1384 end_log_pos 102211
Query thread id=1f84 exec time=0 error_code=0
SET TIMESTAMP=1297061022/*1*/;
update................,! Fie

at 102357 \
#110207 15:43:42 sg¢rver id 1384 end log pos 102238
Xid = 12951490691 |
COMMIT/*!*/; ﬂ
EQF

end log pos == 101719

B Events from relay log position 101835
are lost on slave 3

B mysqlbinlog --start-position=101835
should be applied to slave 3

Relay log and “Partial Transaction” -

Massive transactions

{Relay Master Log File, Exec Master Log Pos}

| UPDATE... | & These events are
INSERT... |] NOT executed forever

JPDATE...

NSERT...
JPDATE...
COMMIT;

| (EOF)

{Master _Log File, Read Master Log Pos}

B Alive slave 10 thread writes valid relay log events, so invalid (can’t read)
events should not be written to the relay log

B But if master crashes while sending binary logs, it 1s likely that only some
parts of the events are sent and written on slaves.

B In this case, slave does not execute the last (incomplete) transaction.

® {Master Log File, Read Master Log Pos} points to the end of the relay log,
but {Relay_Master_ Log File, Exec Master Log Pos} will point to the last
transaction commuit.

. DeNA
. ost transactions

; Relay Log Pos ' - B [n some unusual cases, relay
(Current slave1’s data) | ! = ——09_TC logs are not ended with
S — / transaction commits

® i.c. running very long
transactions

[user@slave/1] mysqlbinlog mysgld-relay-bin.003300
at 91807 P 7
#110207 15:43:42 server id 1384 &nd_log_

Xid = 12 1490655 —_— B Read Master_Log_Pos always
COMMIT/*1*/: points to the end of the relay
(% at 91835) log”s end_log_pos

#110207 15:43:42 server id 1384 end_log_pos 101764 B Exec_Master_Log_Pos POiﬂ}S
Query thread id=1784 exec time=0 error code=0 to éh‘i end of ﬂggﬁlﬁfﬁlon S
SET TIMESTAMP=1297061022/*!*/; end_log_pos ()

BEGIN ‘
[x1%/: B In the left case,
t 91910 Exec_Master Log Pos ==
oy * 087~ Read Master Log Pos is never
| true

Query thread id=1784 exec time=U_jerro g

SET TIMESTAMP=1297061022/*1*/; _

updatecoeeennnnn B Slave 1I's SQL thread will never
[¥1% /- execute BEGIN and UPDATE
(E' O’F) statements

B Unapplied events can be

] .
e T e s | generated by mysqlbinlog —
| Read_Master_Log_Pos start-position=91835

Recovering lost transactions

[user@slave2] mysqglbinlog mysqld-relay-bin.003123
at 106

#101210 4:19:03 serverid 1384 end _log pos 0
Rotate to mysqld-bin.001221 pos: 4

at 101807

#110207 15:43:42 server id 1384 end_log pos 101719
Xid = 12951490655

COMMIT/*1¥/;

at 101835

#110207 15:43:42 server id 1384 end log pos 101764
error_code=0

Query thread id=1784 exec time=0
SET TIMESTAMP=1297061022/*!*/
BEGIN
[*1*1,

at 101910
#110207 15:43:42 server id 138
Query thread_id=1784 exet ~time=0—
SET TIMESTAMP= 12q 1022/*1*/
update Tassmssan P

s at_ 102213 __J
#110207 1¢ :3:4% server id 1384 end_log_pos 102211
Query thread id%1784 exec time=0 error code=0

SET TIMESTAMFF1297061022/*1*/;
s ot 1 o N— —

%l (B)

at 102357

#110207 15:43:42server id 1384 end log pos 102238
Xid = 129514906¢ 1
COMMIT/*/; (EG

[user@slave 1] mysqlbinlog mysqld-relay-bin.003300
at 106

#101210 4:19:03 serverid 1384 end _log pos O
Rotate to mysqld-bin.001221 pos: 4

at 91807
#110207 15:43:42 serverid 13 end _log _nos 101749
Xid = 12951490655

02671 |3 142 server id 1383~ end_
Query threg d id=1784 exec _time= 0

SET TIMESTAMP= 1297061022/*17/;

error_code—o

BEGIN
/*'*/ (A)
at 91910 =
| #T10207°7: ii__ server id 7. 154G, nd_ Iog pos 102067_____,_;

Query threqd_id=1784 exec_time=0
SET TIMESTAMP=1297061022/*!*/;
update 1..... l

[*1*; (EOF),

B The second update event is lost on

slave 1, which can be sent from slave 2

B The first update event is not executed
on slave 1’s SQL thread

B (A) + (B) should be applied on slave
1, wichin the same transaction

D

'NA

DeNA
Steps for recovery

Dead Master Latest Slave Slave(i)

Wait until SQL thread
executes all events

Final Relay_Log_File,
Relay Log Pos

- (i1) Partial Transaction

Master_Log_FiIe/

Read Master Log Pos
>

(i2) Differential relay logs from each slave’s read pos to
) the latest slave’s read pos

(X) Differential binary logs from the latest slave’s read pos
to the dead master’s tail of the binary log

B On slave(1),
® Wait until the SQL thread executes events
® Applyi1l >12 > X
— On the latest slave, 12 1s empty

. DeNA
Design notes

B Trimming ROLLBACK events from mysqglbinlog
B Purging relay logs

B [dentifying whether SQL thread has really executed
all events

B Handling malicious queries
B Parallel recovery on multiple slaves

B Row based format

mysglbinlog and ROLLBACK events —

[user@slave1] mysglbinlog slave1-relay.003300 --position=91835 B mysqglbinlog adds a ROLLBACK

ﬁ1a1t0?210873?5'43'42 id 1384 end_| 101764 wtoment 2. G mag o, the
:43:42 server | end_log_pos generated file

Query thread id=1784 exec time=0 error_code=0
SET TIMESTAMP=1297061022;

E Eth!)I:Ig']o B mysqlbinlog may add a

#110207 15:43:42 server id 1384 end_log_pos 102067 ROLLBACK statement and/or an
Query thread id=1784 exec time=0 error_code=0 equivalent BINLOG event at the
SET TIMESTAMP=1297061022; beginning of the generated file

(included 1n the START event)

ROLLBACK; /* added by mysqglbinlog */

Lu:?;@slaveZ] mysqlbinlog slave2-relay.003123 i If_ROLLB ACK is ex e.cut ed in the
#101221 20:48:00 server id 1071 end_log_pos 107 Start: bi middle ot the transaction,

v 4, server v 5.5.8-log created 101221 20:48:00 database will be 1inconsistent
ROLLBACK;

BINLOG ' o
8JMQTQ8VBAAAZWAAAGSAAAAAAAQANSA1LjgtbGINAAAA B Trimming these ROLLBACK
AAAAAAAAAAAAAAAAAAAAAAAAAAA queries/events from mysqlbinlog
AAAAAAAAAAAAAAAAAAAAAAAAEZgNAAGAEGAEBAQEEGA outputs is needed
EGggAAAAICAGCAA== '/*I*/;

at 102213

#110207 15:43:42 server id 1384 end _log pos 102211 B Do not trim necessary rollback
SET TIMESTAMP=1297061022/*1*/; statements (i.e. BEGIN: updating
4 ot 100357 non-trans table, updating trans
#110207 15:43:42 server id 1384 end_log_pos 102238 table, ROLLBACK)

Xid = 12951490691
COMMIT/**/;
ROLLBACK; /* added by mysqglbinlog */

. DeNA
Purging relay logs

B By default, when SQL thread has read and executed the whole
relay log file, SQL thread automatically removes it.

® Because i1t 1s not needed by the SQL thread anymore
® But for recovering other slaves, the old relay logs might be needed

B SET GLOBAL relay log purge=0, and set it in my.cnf

B Side effect:

® Relay log files will sooner or later occupy the whole disk space

— No similar features like expire logs days for binary logs

— Schedule the following batch job will help
* SET GLOBAL relay log purge=1;
* FLUSH LOGS;

* Waiting for a while so that SQL thread switches the log file (old logs are removed)
* SET GLOBAL relay log purge=0;

® When SQL thread reaches the end of the relay log file and 1f
relay log purge equals to 1, the SQL thread removes all of the relay logs
it has executed so far

— No way to remove “all relay logs before yesterday”

— Invoking cron jobs at the same time on the all slaves will cause “no relay log
found for recovery” situation

Tips: Removing lots of large files

B Another serious side effect:

® SQL thread removes all relay log files when it reaches the end of the
relay log

® When you set relay log purge=1 per day, the total relay log file size
might reach 10GB or (much) more

® Dropping lots of large files take very long time on ext3

® SQL thread stops until removing all relay logs
— Might take 90 seconds to drop 30*1GB files

B Solution: Creating hard links

® foreach (relay logs)
— In /path/to/relay log /path/to/archive dir/

® SET GLOBAL relay log purge=1; FLUSH LOGS; SET GLOBAL
relay log purge=0;

® rm —{ /path/to/archive dir/*

How to identify whether SQL thread DeNA
has executed all events

B Youneed wait until SQL thread has executed all events
B SELECT MASTER POS WAIT (<Master Log File>,<Read Master Log Pos>)

may not work

® MASTER POS WAIT() blocks until the slave has read and applied all
updates up to the specified position in the master log.

® [f only part of the transactions are sent to the slave, SQL thread will never
execute up to Read Master Log Pos.

B Check SHOW PROCESSLIST outputs

® [f there 1s a thread of “system user” that has “*Has read all relay log; waiting for the
slave I/O thread to update 1t” state, the SQL thread has executed all events.

mysql> show processlist¥G
[d: 14
User: system user
Host:
db: NULL

Command: Connect

Time: 57609
State: Has read all relay log; waiting for the slave 1/0 thread

to update 1t
Info: NULL

Malicious queries

B Some malicious queries might cause recovery problems

® insert into t1 values(0,0,"ROLLBACK);
at 15465
#110204 17:02:33 server 1d 1306 end log pos 1662 Query thread 1d=30069 exec time=0
error _code=0

ROLLBACK");
® Problems happen if end log pos value matches the target position

® Use mysqlbinlog --base64-output=always to 1dentify starting position

— Query events are converted to row format. Base64 row format never contains
malicious strings

— Supported 1n mysqglbinlog from MySQL 5.1 or higher, but can work with
MySQL 5.0 server, too

— After identifying starting relay log position, generate events by normal
mysqlbinlog arguments (printing query events don’t cause problems here)

B 5.1 mysglbinlog can read 5.0/5.1 binlog format

® Use --base64-output=never for 5.0 mysqld to suppress printing BINLOG
events

DeNA
Parallel Recovery

B In some cases many (10 or more) slaves are deployed
B Each slave can be recovered 1n parallel

B Relay logs are deleted once the slave executes
CHANGE MASTER.

B You must not execute CHANGE MASTER on the
latest slave until you generate diff relay logs for all
the rest slaves

Recovery procedure

Manager Dead Master Latest Slave newM

1. Saving Master Binlog Phase

< Generate binlog

2. Diff Log Generation on the New Master Phase
Generate diff relay log

>

3. Master Log Apply Phase

>
Generate non-executed relay logs

Apply all logs

4. Parallel Slave Diff Log Generation Phase
Generate diff relay log

5. Parallel Slave Log Apply Phase

>

" Generate non-executed relay logs
Apply all logs
Change Master, Start Slave

DeNA

Slaves

Row based format DENA

at 2642668

at 2642713

#110411 16:14:00 server id 1306 end log pos 2642713 Table map: db1 .'t1
mapped to number 16

#110411 16:14:00 server id 1306 end log pos 2642764 \Write rows: table id 16
flags: STMT _END F

BINLOG
OKqgiTRMaBQAALQAAABITKAAAABAAAAAAAAEABWAhbWVFAAJOMQADAWPS
AQIG
OKqgiTRcaBQAAMWAAAEXTKAAAABAAAAAAAAEAA//4CmMgAAAPOAAALAGFhY
WFhYTI2NjMO

I/*!*/;
B Multiple “#at” entries + same number of “end log pos” entries (when parsed by
mysqlbinlog)
B “Table map” event + “Write rows (or others)” event + STMT END
® Write rows events can be many when using LOAD DATA, Bulk INSERT, etc
mysqlbinlog prints out when valid “Table Map .. STMT End” events are written

If slave A has only partial events, it 1s needed to send complete “Table Map ..
STMT End” events from the latest slave

Automating failover DENA

B Common HA tasks

® Dectecting master failure
® Node Fencing (Power off the dead master, to avoid split brain)
® Updating writer IP address

B Writing a script to do failover, based on what I have covered so far

B Running master failover scripts automatically

® Make sure not to stop by stupid errors
— Creating working/logging directory 1f not exists

— Check SSH public key authentication and MySQL privileges at the beginning of starting
the monitoring script

® Decide failover criteria

— Not starting failover 1f one or more slave servers are not alive (or SQL thread can’t be
started)

— Not starting failover 1f the last failover has happened recently (within 8 hours)

B Notification/Operation
® Sending mails
® Disabling scheduled backup jobs on the new master
® Updating internal administration tool status, master/slave 1p address mappings, etc

Tool: Master High Availability Toolkit S——

Managerg

MySQL-MasterHA-Manager
- master_monitor

- master_switch

- masterha_manager

MySQL-MasterHA-Node
- save_binary logs
- apply_diff _relay logs
- filter_mysqlbinlog
- purge_relay logs

B Manager
® master monitor: Detecting master failure
® master switch: Doing failover (manual, or automatic failover invoked by masterha manager)

B Node : Deploying on all MySQL servers
® save binary logs: Copying master’s binary logs if accessible
® apply diff relay logs: Generating differential relay logs from the latest slave, and applying all
differential binlog events
® filter mysqlbinlog: Trimming unnecessary ROLLBACK events

® purge relay logs: Deleting relay logs without stopping SQL thread
B We have started using this tool internally. Will publish as OSS soon

One Manager per Datacenter

master master

master

DC3

DeNA

Each Manager monitors multiple
MySQL masters within the same

datacenter

[f managers at DC2 and DC3 are

reachable from the mana

ger at

DC1, and 1f a master 1s not

reachable from none of t

1C

managers, the master fai.
procedure starts

® Main purpose 1s to avo
brain

OVCT

1d split

[f any catastrophic failure
(datacenter crash) happens, we do

manual failover

Case

B Kernel panic happened on the master

B Checking whether the master 1s really dead (10 sec)

® Checking SSH reachability (to check saving binlog 1s possible or not)
® Check connectivity through other datacenters (secondary networks)

B STONITH (Forcing power off)

® To make sure the master 1s really not active

® Power off time highly depends on H/'W
— Dell PowerEdge R610: 5-10 seconds (via telnet+DRAC)
— HP DL360: 4-5 seconds (via ipmitool+1L.0O)

B Master recovery
® Finished in less than 1 second

B Parallel slave recovery
® Finished in less than 1 second

NA

Current limitations & tips DENA

B Three or more-tier replication 1s not supported (1.e. Master->Master2->Slave)

® Check Global Transaction ID project

— Tracing differential relay log events becomes much easier
— Binlog format needs to be changed (It doesn’t work with -5.5)

B [LOAD DATA [LOCAL] INFILE with SBR 1s not supported

® [t’s deprecated actually, and 1t causes significant replication delay.

® SET sqgl log bin=0; LOAD DATA ... ; SET sqgl log bin=1; 1s recommended
approach

B Replication filtering rules (binlog-do-db, replicate-ignore-db, etc) must be
same on all MySQL servers

B Do not use MySQL 5.0.45 or lower version
® cnd log pos is incorrect (not absolute): http://bugs.mysqgl.com/bug.php?1d=22540

— I did a bit hack to make the tool work with 5.0.45 since we still have some legacy
servers, but generally upgrades should be done

® When replication network failure happens, a bogus byte stream might be sent to
slaves, which will stop SQL threads: http://bugs.mysqgl.com/bug.php?1d=26489

Table of contents R

B Minimizing downtime at master maintenance

Coe e . . DeNA
Minimizing downtime at master maintenance

B Operations that need switching master
® Upgrading MySQL
® Replacing H/'W components (increasing RAM, etc)

B Operations that do NOT need switching master
® Adding/dropping index
® Adding columns
® oak-online-alter-table or Facebook OSC may help

B Adding/Changing shards

® (Can be done without stopping service, 1f designed well

® Hash based sharding makes 1t difficult to re-shard without stopping
SErvices

® Mapping table based sharding makes 1t much easier

Tentative three—tier replication

%r App | Writer App |
g \‘\I 3

E. - »

slave Orig master /\New master

slave. slave slave: slave
B Applications gradually establish database connections to the

new master (or just moving writer IP address, 1f you can
accept burst errors)

B Writes on the orig master will be finally replicated to the new
master

B Destroying orig master when orig master has sent all binlog
events

mas er

Tentative three—tier replication (2) DENA

Writer App | Writer App |

W

@——mﬂ

Orig master New master

slave: slave
B Cons: Consistency problems might happen

® AUTO INCREMENT doesn’t work (ID conflict), unless carefully using
auto increment increment and auto increment offset

® When the current master is updated, the row on the slave 1 is not locked

® “#1. Updating cur master set value=500 where 1d=1, #2. Updating slave 1 set value=1000
where 1d=1, #3. Replicating #1” -> #2 1s lost

® Works well for INSERT-only, non-auto-inc query patterns
B Other possible approaches

® Using Spider + VP storage engine on the orig master
— Synchronous updates to the new master
— Replicatoin channel must be disconnected between orig master and new master

Promoting one of slaves

Writer App ‘ Writer App \
? l ? v/ Activating write IP
ﬁ “au after slave1 promotes
maste -

Master

/R - slave1->
sla slave. slav slave2: slave3:

CHANGE MASTER CHANGE MASTER

B Cons: A few seconds of write downtime happens
® Until slave 1 1s activated as a new master
® Master switch should be done as quickly as possible

— Otherwise applications can not execute updates for a long time

. DeNA
Is a few seconds of downtime acceptable?

B In some cases 1t 1s acceptable for a few seconds of
downtime on master
® 500+ connections per second regularly
® 100 connections at 3am

® 2 seconds downtime will make 200 connections get
tentative errors
— Pushing reload button will be fine

Graceful master switch

B FLUSH TABLES WITH READ LOCK 1s not a silver bullet

® Does not return errors immediately
® Applications are kept waiting in orig master forever, unless read timeout 1s set
® Response time and number of connections are highly increased

B Updating multiple mysql instances (multiple shards) 1s not uncommon

® “COMMIT Successtul on node 1 -> COMMIT failure on node 2” results in data
Inconsistency

® At least transaction commit should not be aborted

B More graceful approach
® Re¢jecting new database connections (DROP USER app user)
® Waiting for 1-2 seconds so that almost all database connections are disconnected
® Re¢jecting all updates except SUPER by SET GLOBAL read only=1;
® Waiting for .N second
® Rejecting all updates by FLUSH TABLES WITH READ LOCK

Part of Master High Availability Toolkit DENA

B “Fast master switch” functionality 1s included, mostly
based on master failover tool
® master switch --master state=alive

® Master switch 1n 2 seconds (2 seconds for graceful writer
blocks)

B Differences from master failover are:
® Not automatic (interactive)
® All servers must be alive
® Replication delay must be zero
® [reezing updates on the current master 1s needed
® No power oft

® No binlog/relay log recovery (Just using
MASTER POS WAIT() 1s fine)

. DeNA
Conclusion

B Automating master failover 1s possible

® Without introducing too much complexity on application
side

® With 5.0/5.1 InnoDB

® Without losing performance significantly

® Without spending too much money

® Works perfectly with Semi Synchronous Replication

B Our tool will soon be released as an open source
software

