# Display System Optimization Roadmap ## Phase 2: GStreamer Integration ### Overview Implement GStreamer-based display backend for hardware-accelerated rendering, particularly optimized for embedded systems like Raspberry Pi. ### Goals - **Performance**: 60-80% reduction in CPU usage - **Hardware Acceleration**: Utilize GPU/VPU when available - **Zero-Copy**: Minimize memory bandwidth usage - **Flexibility**: Support multiple output formats (window, file, network stream) ### Implementation Plan #### 1. Core GStreamer Backend (`src/display/gstreamer_backend.rs`) ```rust pub struct GStreamerDisplay { pipeline: gst::Pipeline, appsrc: gst_app::AppSrc, bus: gst::Bus, config: DisplayConfig, stats: DisplayStats, } impl DisplayBackend for GStreamerDisplay { // Implement trait methods using GStreamer pipeline } ``` **Key Features:** - Dynamic pipeline creation based on output requirements - Hardware encoder detection and utilization - Efficient buffer management with memory pools - Error handling and pipeline state management #### 2. Pipeline Configurations ##### Basic Window Display ``` appsrc ! videoconvert ! videoscale ! xvimagesink ``` ##### Hardware-Accelerated (Raspberry Pi) ``` appsrc ! v4l2convert ! video/x-raw,format=NV12 ! v4l2h264enc ! h264parse ! v4l2h264dec ! xvimagesink ``` ##### Network Streaming ``` appsrc ! videoconvert ! x264enc ! rtph264pay ! udpsink host=192.168.1.100 port=5000 ``` ##### File Recording ``` appsrc ! videoconvert ! x264enc ! mp4mux ! filesink location=output.mp4 ``` #### 3. Dependencies and Setup **Cargo.toml additions:** ```toml [dependencies] gstreamer = "0.20" gstreamer-app = "0.20" gstreamer-video = "0.20" [features] gstreamer-display = ["gstreamer", "gstreamer-app", "gstreamer-video"] ``` **System Dependencies:** ```bash # Ubuntu/Debian sudo apt install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev # Raspberry Pi additional packages sudo apt install gstreamer1.0-omx gstreamer1.0-plugins-bad ``` #### 4. Buffer Management Optimization ```rust struct BufferPool { pool: gst::BufferPool, allocator: gst::Allocator, } impl BufferPool { fn get_buffer(&self, mat: &opencv::Mat) -> Result { // Zero-copy conversion from OpenCV Mat to GStreamer Buffer // Use memory mapping when possible } } ``` #### 5. Auto-Detection and Fallback ```rust pub fn create_optimal_display(config: DisplayConfig) -> Box { if gstreamer_available() && hardware_acceleration_available() { Box::new(GStreamerDisplay::new(config)) } else { Box::new(OpenCVDisplay::new(config)) } } ``` ### Hardware-Specific Optimizations #### Raspberry Pi 4/5 - **GPU Memory Split**: `gpu_mem=128` in `/boot/config.txt` - **V4L2 Codecs**: Utilize hardware H.264 encoder/decoder - **DMA Buffers**: Use DMA-BUF for zero-copy operations #### NVIDIA Jetson - **NVENC/NVDEC**: Hardware encoding/decoding - **CUDA Integration**: GPU-accelerated image processing #### Intel Systems - **VAAPI**: Video Acceleration API support - **Quick Sync**: Hardware encoding acceleration ### Performance Targets | Metric | Current (OpenCV) | Target (GStreamer) | Improvement | |--------|------------------|-------------------|-------------| | CPU Usage | 60-80% | 15-25% | 60-75% reduction | | Memory Bandwidth | 2-3 GB/s | 0.5-1 GB/s | 50-75% reduction | | Latency | 3-5 frames | 1-2 frames | 60% reduction | | Power Consumption | High | Low | 30-50% reduction | ### Implementation Timeline #### Week 1-2: Foundation - [ ] Set up GStreamer Rust bindings - [ ] Create basic pipeline structure - [ ] Implement DisplayBackend trait - [ ] Basic window display working #### Week 3-4: Optimization - [ ] Buffer pool implementation - [ ] Zero-copy Mat to Buffer conversion - [ ] Hardware acceleration detection - [ ] Pipeline optimization #### Week 5-6: Advanced Features - [ ] Multiple output support (file, network) - [ ] Error recovery and robustness - [ ] Performance profiling and tuning - [ ] Documentation and examples #### Week 7-8: Integration and Testing - [ ] Update demos to use GStreamer backend - [ ] Raspberry Pi testing and optimization - [ ] Benchmark comparison with OpenCV - [ ] Production readiness assessment ### Compatibility Matrix | Platform | GStreamer Support | Hardware Accel | Recommended Pipeline | |----------|------------------|----------------|---------------------| | Raspberry Pi 4/5 | ✅ | V4L2 | v4l2convert + omx | | NVIDIA Jetson | ✅ | NVENC/NVDEC | nvvidconv + nvenc | | Intel x86 | ✅ | VAAPI | vaapi + intel-media | | Generic Linux | ✅ | Software | videoconvert + x264 | | macOS | ✅ | VideoToolbox | vtenc + osxvideosink | | Windows | ✅ | DirectShow | d3d11 + mf | ### Testing Strategy #### Unit Tests - Pipeline creation and teardown - Buffer management - Error handling #### Integration Tests - End-to-end display functionality - Performance benchmarking - Memory leak detection #### Hardware Tests - Raspberry Pi 4/5 validation - NVIDIA Jetson compatibility - Various resolution and framerate combinations ### Risk Mitigation #### Potential Issues 1. **GStreamer Version Compatibility**: Different distributions have different GStreamer versions 2. **Hardware Driver Issues**: Proprietary drivers may not be available 3. **Memory Alignment**: OpenCV Mat and GStreamer Buffer memory layout differences #### Solutions 1. **Runtime Detection**: Probe capabilities at startup 2. **Graceful Fallback**: Fall back to OpenCV backend if GStreamer fails 3. **Memory Copy Fallback**: Use memory copy if zero-copy fails ### Success Metrics #### Must-Have - [ ] 50%+ reduction in CPU usage on Raspberry Pi - [ ] Maintain visual quality parity with OpenCV - [ ] No memory leaks during extended operation - [ ] Graceful error handling and recovery #### Nice-to-Have - [ ] Network streaming capability - [ ] Recording to file functionality - [ ] Multi-window support - [ ] Real-time performance monitoring ### Documentation Requirements - [ ] API documentation for new backend - [ ] Hardware setup guides for different platforms - [ ] Performance tuning recommendations - [ ] Troubleshooting guide for common issues - [ ] Migration guide from OpenCV backend --- ## Phase 3: Future Enhancements ### WebRTC Integration - Real-time streaming to web browsers - Low-latency remote monitoring ### Custom Shaders - GPU-accelerated overlay rendering - Advanced visual effects ### Multi-Display Support - Simultaneous output to multiple displays - Picture-in-picture functionality --- *This roadmap will be updated as Phase 2 development progresses.*